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Abstract 
Fire weather tools, such as the National Fire Danger Rating System (NFDRS) and the 
Wildland Fire Decision Support System (WFDSS), have been developed to support wildland fire 
management decisions. However, little is known about how these tools are used in practice, the 
sensitivity of fire management decisions to fire weather variables, or the sensitivity of fire-
weather tools to input errors. This project was designed to address these gaps in current 
knowledge.  
Objectives: This project sought to achieve four main objectives: 
1) Consider how fire-weather models are used to support strategic and tactical decisions. 
2) Consider the sensitivity of fire-weather tools to various sources of input error. 
3) Assess the sensitivity of fire management decisions to fire-weather variables. 
4) Consider implications of these results to improve support for fire management decisions.  
Methods: Project methods included:  
1) Semi-structured interview with 27 full and part-time Incident Management Team (IMT) 

members, district rangers, fire management officers, regional fire management coordinators, 
fire management and fuels specialists, and others in the western and southern United States.  

2) Leveraging concurrent work to explore the sensitivity analysis fire behavior modelling tools 
to explore how fire weather inputs affect model outputs. This phase identified critical fire 
weather inputs that heavily impact model predictions from fire modeling systems that are 
used in Decision Support Systems throughout the United States and this guided the 
development of fire management scenarios for subsequent phases of the project. While our 
original objectives included plans to complete a sensitivity analysis, the project was modified 
due to 1) a loss of the portion of project funds intended to support this analysis due to fire 
borrowing (funds were not returned to the project), and 2) another research team was 
commissioned to complete a similar analysis concurrently with our project during the same 
timeframe. 

3) Web-based survey with federal fire managers (e.g., Fire Management Officers or FMOs) 
working for US Department of Agriculture Forest Service (USFS) including an embedded 
choice experiment designed to evaluate the influence of fire-weather and other key variables 
in a decision regarding whether to engage in direct or indirect attack.  

Key Results: Results from the interviews indicated that, in practice, models are being used 
differently than intended (e.g., to inform operational decisions), confidence in model outputs 
differs between managers and technical specialists and is influenced by both social and technical 
characteristics. Participants have lower confidence in precipitation and wind forecasts than 
humidity or general weather forecasts. In general, participants appeared to express a preference 
for indirect attack. Decisions to switch to direct attack was strongly influenced by the timing of 
the fire even (e.g., early in the fire season). Participants were more likely to decide to switch to 
indirect attack when the combination of variables suggested the potential for extreme fire 
behavior.  
Conclusions: Overall, these results emphasize the importance of designing decision support 
tools with the decision strategies used by managers in mind. Results also suggest the importance 
of both social and technical components in developing manager confidence in models. This 
emphasizes the importance of communication and relationship-building by technical specialists 
on IMTs. Moreover, our results suggest that wind and precipitation forecasts merit particular 
attention in further efforts to improve model accuracy and build confidence in existing models.  
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Objectives 
 
This project sought to achieve four main objectives. Each objective is listed below with related 
questions explored under each.  
 
1) Consider how fire-weather models are used to support strategic and tactical decisions. 

a. What are the primary tools and data sources used to support operational fire management 
decisions at different spatial and temporal scales and how confident are decision makers 
in these tools? 

b. What would improve the utility of fire danger and behavior information (e.g., more 
detail, higher levels of confidence in predictions)? 

c. Are current strategic and tactical decisions aligned with fire management objectives? 
d. Can improved model information result in decisions that are more aligned with 

objectives? 
 

2) Consider the sensitivity of fire-weather tools to various sources of input error. 
a. What sources of observed and forecast weather data are used to support operational fire 

danger and fire behavior assessment tools? 
b. For each of these tools, what fire weather variables most heavily impact calculated 

values? 
c. What are the natural ranges of errors for these key variables? 

 
3) Assess the sensitivity of fire management decisions to fire-weather variables. 

a. To what extent would fire model outputs have to change to lead to different decisions? 
b. What tipping points exist in fire danger and behavior information that lead to new fire 

management decisions? 
c. What information causes a tipping point? 

 
4) Consider implications of these results to improve support for fire management decisions. 

a. How can tools be improved to be more useful for fire managers> 
b. What fire weather data is key to providing the information desired by managers? 
c. Where could future research and development efforts be focused to improve fire danger 

and behavior modeling? 
 

Background 
 
Over the last decade, 7.5 million acres have been burned annually in the United States (NIFC 
2014), endangering our natural resources, infrastructure, homes, and lives. Wildland fire 
managers are frequently required to make decisions that attempt to maximize firefighting 
readiness and effectiveness while minimizing risk and ensuring the safety of firefighting 
personnel and the public. These decisions are made both well before a fire starts as well as 
during fire events when deciding on what resources to adopt and operational tactics to employ. 
Despite the magnitude of these decisions, little is known about how these decisions are made, 
what factors are most influential to the decisions, and what role fire weather-based prediction 
tools play in supporting the decision-making process.  
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Many modeling and forecast programs have been developed over the last several decades to 
support fire managers as they make these complex decisions. In the early 1970’s, the US 
National Fire Danger Rating System (NFDRS) was developed to aid wildland fire managers in 
preparing for and responding to wildland fires (Deeming 1977). The system is built upon a 
network of weather stations that record and report hourly weather data nationwide. NFDRS has 
been used operationally for decades and it is the foundation for many daily fire management 
decisions. In the late-2000’s, the Wildland Fire Decision Support System (WFDSS) was created 
to provide managers with resources to manage extended attack fires. Fire behavior prediction 
tools were integrated into this system to provide fire spread predictions from one day to up to 
two weeks. Many of the fire modeling tools in WFDSS build upon the fuel moisture and fire 
danger indices from NFDRS. WFDSS further extends its weather inputs by leveraging data from 
the National Weather Service National Digital Forecast Database to provide seven day forecast 
weather scenarios. Both of these systems have become an integral component of local, state and 
federal wildland fire management decision-making (Calkin et al. 2011). 
 
However, despite a long tradition of use and application by fire managers, neither of these 
systems has undergone extensive sensitivity testing. As such, little is known about what weather 
parameters are most influential to predicted outputs. This information is critical to both the 
decision-makers and the data providers. A clear and comprehensive sensitivity analysis of both 
the fire danger and fire behavior prediction tools could assist partners, such as the National 
Weather Service, to focus their efforts to improve critical fire weather forecast variables. 
Additionally, these sensitivity analyses would help fire managers to better understand the 
abilities and limits of the current system. 
 
Moreover, despite substantial investments in the development of tools such as NFDRS and 
WFDSS, there has been limited assessment of how these tools are used. Federal fire management 
policies clearly indicate that these tools are required to be used to inform decision-making 
(NWCG 2014) but it is not clear how influential the fire model outputs are in the decision-
making process. Ultimately, fire management decisions are characterized by substantial 
uncertainty with multiple interacting variables (Steelman and McCaffrey 2011, Thompson 2014, 
Thompson and Calkin 2011). Little is known about how output from fire models is weighed 
against other considerations when making decisions. This project sought to address these gaps 
and improve our understanding of how managers use the currently available tools and their 
outputs, how they perceive the quality of the provided information, and how the tools could be 
modified to increase their perceived utility and adoption by fire managers.  
 

Materials and Methods 
 
This project was implemented in four phases with each phase building upon the previous steps to 
systematically address our research objectives.  
 
Phase one 
In the first phase of the project we conducted semi-structured interviews with fire managers and 
technical specialists from several federal agencies across the western and southern US. We 
purposefully selected participants to represent a broad range of fire management positions and 
agencies (see Table 1 and 2 for additional information about interview participants). The 
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research team drew on our working knowledge of this population, local fire science network 
contacts, and publicly available employee information to identify the initial list of potential 
participants. We used a snowball approach to identify additional participants; at the conclusion 
of each interview, we asked the participant to recommend relevant personnel for further 
interviews.  
 
Table 1: Study sample by agency 
 
Agency Participants 
USDA Forest Service (USFS) 10 
National Park Service (NPS) 4 
Bureau of Land Management (BLM) 3 
Fish and Wildlife Service (FWS) 3 
US state agencies 5 
National Oceanic and Atmospheric Administration, National Weather Service 
(NWS) 2 

 
 
Table 2: Expertise of study sample 

Agency Participants 
Planning: Technical specialists 15 
Planning: other 3 
Operations 5 
Command 2 
Non-IMT (e.g., line officer, regional coordinator, predictive services manager) 4 

 
 
Between March and May 2017, we completed 27 interviews in person and over the phone. 
Interviews lasted between 30 and 60 minutes on average, with the longest taking 110 minutes. 
Interviewees included full and part-time IMT members, district rangers, fire management 
officers, regional fire management coordinators, fire management and fuels specialists, and 
others. Interviewees may have held multiple titles; for example, an interviewee may have been a 
fire management officer who served as a fire behavior analyst on an IMT. 
 
We used an interview protocol to guide these interviews (full interview protocol available on the 
JFSP website; saved under “other products” associated with this project), but conversation was 
not confined to those questions and was allowed to proceed organically (Patton 2002). Interviews 
explored the flow of information during fire incidents, such as fire model outputs and weather 
forecasts, and decisions during incidents. Participants addressed many of the questions 
unprompted during the interviews.  
 
All interviews were audio-recorded and transcribed. Analysis was completed using the data 
analysis software MaxQDA. The research team developed a detailed codebook based on initial 
research questions, guiding theory, and themes that emerged within the interviews (Rubin and 
Rubin 2005; Saldana 2010; Creswell and Poth 2018) to guide the coding process. A portion of 
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these transcripts were coded by two researchers and discussed until intercoder reliability 
(measures the percent of matching codes assigned by two or more coders working in isolation) 
and intercoder agreement (involves discussion between coders to reconcile discrepancies through 
discussion and measures final agreement after arbitration) reached 99% (intercoder agreement 
requires coders to reconcile any discrepancies through discussion and arbitration) (Campbell et 
al. 2013). Both researchers coded and discussed 40% of the interviews (10 transcripts) to reach 
agreement on the coding approach before the remaining transcripts were coded independently. 
Complex sections were discussed on a case-by-case basis for the remaining transcripts. 
 
Phase two 
In this phase, we leveraged the fire spread model sensitivity analysis that was published by Page 
et. al. (2018) to develop fire spread scenarios for the choice experiments that exploited known 
model sensitivities to variables such as windspeed, relative humidity and rainfall. We chose a 
relatively small but complex fire from Central Utah as our example fire. We produced fire spread 
simulations using LANDFIRE fuels data, the FlamMap fire modeling package and weather from 
a local Remote Automated Weather Station. We compared observed and forecast weather data 
for 30 days previous to the fire simulation initiation date and we determined the forecast mean 
absolute error over that time period for temperature, relative humidity, rainfall and windspeed. 
We then created a factorial set of simulations that encompassed the weather forecast and its 
potential error over that time period for a 72-hour period. This allowed us to leverage model 
sensitivity to various weather inputs in the scenarios for the choice experiments. 
 
Phase three 
The third objective was addressed by developing a web-based survey sent to federal fire 
managers working for the USFS. Surveys were conducted using Sawtooth, a web-based survey 
and choice experiment platform. For this survey, we specifically targeted fire management 
officers (FMOs) (i.e., assistant fire management officers, forest fire management officers, etc.). 
To be an FMO, individuals must have several years of operational firefighting experience and 
hold qualifications to serve as division supervisors, operations section chiefs, or incident 
commanders on IMTs.  
 
We developed our initial list of FMOs from internal email lists and augmented this by contacting 
individual Forest Supervisors to check that our list was up-to-date for their forests. After 
removing invalid emails, we had a final list of 669 potential respondents. Of these, 243 
respondents, or 36% responded. After removing respondents who did not complete the choice 
experiment, the final sample included 182 respondents for an adjusted response rate of 27%. This 
response rate is in line with previous online surveys of federal fire managers, which typically 
have a response rate between 25 – 50% (e.g., Hand, Wibbenmeyer, Calkin, & Thompson, 2015; 
Wibbenmeyer, Hand, Calkin, Venn, & Thompson, 2012; Wilson, Winter, Maguire, & Ascher, 
2011). 
 
The survey (survey available on the JFSP website) included questions about participant 
characteristics (including length of time they had worked in fire, time in their current job, as well 
as their gender, education, and what role they served in most frequently on IMTs). The survey 
also included a series of questions about the perceived risk and agency culture regarding the use 
of direct and indirect attack fire management strategies. Additionally, we measured respondent 
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confidence in weather models.  
 
The main portion of the survey was dedicated to an embedded choice experiment designed to test 
whether participants would choose to engage in direct or indirect attack to manage an ongoing 
wildfire. Choice experiments provide a method to test the influence of included variables on 
participant decisions. Specifically, choice experiments allow examination of how different levels 
of a given attribute, such as the varying probability of wetting rain, influence which tactics fire 
managers believe are best for a fire. Choice experiments also allow comparisons of the relative 
importance of different attributes, for example whether fire managers are more sensitive to 
changes in precipitation or changes in wind speed when making tactical decisions. 
 
Before beginning the choice experiment, all respondents were provided the same introduction to 
a potential wildfire (see survey for full description). The introduction was intended to be 
ambiguous such that it was not immediately clear whether direct or indirect attack was more 
appropriate. That said, there are substantial challenges in designing a wildfire scenario that is 
realistic in light of the real-world complexity associated with such decisions. To develop the 
scenario presented here, we sought feedback on draft scenarios from a group of FMOs from one 
USFS region as well as from several USFS scientists with extensive experience working on these 
issues. While some simplification is required given the limitations posed by experimental 
research, we sought to develop a context for the subsequent decisions that included or controlled 
for the primary variables that influence decisions about whether to engage in direct versus 
indirect attack to allow us to specifically consider the unique effect of weather information.  
 
After reviewing the introduction, respondents were asked whether they would prefer to engage in 
direct or indirect attack given the information provided. Respondents were then randomly 
assigned to one of two conditions. Those assigned to the first condition (n = 103) were informed 
that the initial attack team had decided to indirectly attack the fire in the first 48 hours. In the 
second condition, respondents (n = 79) were told the initial attack team had decided to directly 
attack the fire during the first 48 hours. The choice experiment asked participants to consider 
when they would switch away from the initial approach to managing the fire.  
 
In the text below, we report a study-specific measure of “importance” for each attribute. As used 
here, importance provides a measure of the relative influence of a given attribute compared to 
other attributes in the choice experiment. Importance scores were calculated from the results of 
the choice experiment analysis. Part-worth utilities were calculated using hierarchical Bayesian 
analysis; to calculate importance, the relative range of part-worth utility for each attribute for 
each respondent is calculated as a percent of the total range across attributes, and then averaged 
across respondents (Orme 2010). Thus, the importance measures of all attributes sum to 100%, 
and measures of importance are ratio-scaled, which is to say an attribute with an importance of 
50% is twice as important as an attribute with an importance of 25%.  
 
 

Results and Discussion 
 
Results are organized below according to our project objectives. Objective 4 is primarily 
addressed in our conclusion.  
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1) Consider how fire-weather models are used to support strategic and tactical decisions. 
 
The utility of fire weather and behavior models to support decisions depends on a number 
of variables and may vary across a fire event.  
In the early stages of a wildfire there is a high need for immediate information to inform initial 
decisions. In these cases, fire-weather models were generally described as being more useful 
than fire behavior models. Decisions during these early stages of initial attack are largely 
scripted based on predefined guidelines (pocket guides) and run cards informed by NFDRS 
thresholds. Thus, information about weather conditions and resource availability are drawn on to 
inform these early decisions. Detailed results generated through WFDSS are not generally 
available when initial decisions need to be made. 
 
Interview participants also indicated that when WFDSS becomes mandatory, the initial output 
may not be immediately available or helpful to support decision-making. In particular, they 
noted that the outputs are often delayed and unable to keep up with the pace of incidents during 
the early stages of an extended fire. They also noted that the quality of these outputs is heavily 
dependent on the quality of the underlying information on local conditions and management 
objectives previously included in WFDSS. Interview participants noted that units have a 
responsibility to keep WFDSS up to date before a fire ignites; however, in some cases they found 
this may not be realistic for under-resourced or overworked units that have to make tradeoffs 
about where they place their time. In such cases, there may be some additional time needed to 
update the foundational information within WFDSS including fuel layers, geospatial layers, or 
management plans before WFDSS can be run. 
 
One respondent explained that fuel layers may only be updated every few years, and thus 
incoming IMTs may not have access to up-to-date information on local fuels. 

“We have a real issue with workload. Workload and capacity … That definitely has an 
impact on the WFDSS process … we’re having trouble getting the data in from our other 
specialists that we want. Some of it might be not a priority, don’t care, but I think most of it is 
they’ve got other things that are far more pressing to get done.”  

 
Belief about the value of the output of the tools varied between managers and technical 
specialists. 
The technical specialists that participated in our interviews generally expressed confidence in the 
reliability of the models, including those that may have considerable uncertainty. For example, 
one specialist stated:  

“Even if these basic models are only 50% accurate, it gets you in the ballpark.” 
 
While another indicated: 

“I always caution people, when you look at models, is that it’s useful information, but don’t 
look at it as a for-sure thing. So, you should always question it, and – they are good though 
for helping guide your decisions, and looking at values out there that may be threatened.” 

 
Managers generally expressed moderate confidence in the models. They recognized that the 
resulting forecasts would not likely be perfect leading to some hesitancy to rely on the models in 
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their decision-making. As one manager stated: 
“I think overall, if you just did any of the fire spread models and let it run … if you’ve got 
reasonable weather and field moisture input, it’s probably going to overpredict what is 
actually happening out there.” 

 
Managers described a range of different ways they used models to inform their decisions. 
Managers described model output as providing one type of information they could use to 
consider potential decisions. Many described models as “telling a story” of different potential 
scenarios that could occur and what may drive those different outcomes. Some described using 
model output to test their intuition about what might occur and the outcomes associated with 
particular decisions. As one manager stated: 

“But we do look at that, going if we did nothing, where’s this gonna go? Where’s the most 
likely spot this thing is gonna grow? And where’s our thread area out there? Where’s our 
values that we need to protect? The model shows this going here, and we have something of 
value there. That is a high priority. We better focus here.” 

 
Another noted: 

“So, you’re taking a model which – our models are good and our models are bad, right? But 
they’re another tool that helps guide tactics or I look at them as a – kind of a gut check or a 
reference check to see if they’re tracking with what you think is occurring.” 

 
There are a number of barriers to using models to using fire weather and behavior models. 
Participants described a number of barriers that may limit the ability for models to effectively 
support fire management decisions.  
 
Participants described the potential to become desensitized to forecasts of extreme events. They 
referred to “red flag fatigue” where managers may become less sensitive to red flag warnings 
that have been in place for an extended period of time. Some suggested this may be addressed by 
revising the warning system with additional detail (such as adding an “orange flag” or “super 
red” levels). As one participant stated: 

“There’s a chronic red flag on the [location] to the point where damn near all summer is a 
red flag warning – or a big chunk of the fire summer anyway – and the problem is that if you 
hear that every single day and every time, it becomes less meaningful.” 

 
One participant described this as a particular concern for early-career firefighters.  

“What I have found is that [first-year firefighters] just start glossing over the importance of 
some of those products like ERC [energy release component] or red flag y because every day 
we’re just getting another set of super extreme conditions y so you just stop worrying about it 
as much.” 

 
Participants also described concern about whether the models were capable of providing reliable 
forecasts given changing weather conditions. Technical specialists in particular expressed 
concern that there may be a “new normal” where more extreme conditions are common and 
models based on historical data may not be capable of providing reliable forecasts going 
forward. As one stated: 

“We’re potentially looking at 1 in like 1700-year kinds of weather events. And we’re relying 
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on either a 10-year or a 30-year data capture and extrapolating the right-hand tail.” 
 
Some also described a conflict between beliefs about what makes a good operations chief and a 
willingness to use model forecasts. Some referenced a culture that emphasizes experience and 
intuition in making decisions. In such cases, some expressed concern that models were only 
viewed as useful if they confirmed pre-existing beliefs. One technical specialist noted:  

“If we tell them something that they already have concluded, they love it. If we tell them 
something that’s not quite the same, they’re highly questionable [questioning].” 

 
Similarly, an operations chief stated:  

“I don’t need the spread models as much as I, I need – because if I don’t – if I don’t have a 
pretty good idea of what the fire’s gonna do over the next 48 hours, then I’m not a very good 
ops chief.” 

 
Some described this as having the potential to create some challenges as operations personnel 
may not be willing to adjust their approach when model forecasts may suggest plans will not be 
successful.  
 
Methods to increase adoption of tools.  
The technical specialists we interviewed recognized that effective decision support involved 
more than simply providing information. They described a number of different ways they 
encouraged use of model results to more effectively support decision-making.  
 
For example, several participants described adjusting model inputs to calibrate the models and 
improve forecasts. Some described situations where they had reduced the accuracy of some of 
the input variables to improve the overall functioning of the model. These respondents described 
the importance of having an in-depth understanding of how the models function to do this 
effectively.  
 
Several technical specialists also noted the importance of developing relationships with others on 
the IMT to build trust and credibility. They described this as contributing to increased confidence 
in the models and a greater willingness to consider model output. They indicated it takes time to 
build these relationships. Some indicated they found success when they were able to work with 
the same operations chief or incident commanders on different fire events. While Fire Behavior 
Specialists can work remotely in some cases, some participants emphasized the importance of 
being physically present on the fire event and having face-to-face interactions with the IMT. 
They noted that being present on the fire allowed them to learn about local conditions and better 
calibrate their models while also providing an opportunity for direct interactions with the rest of 
the IMT, to describe and discuss the rationale for the models, and to develop relationships. 
 
Along these lines, one respondent noted: 

“I try to gather information from them on what they’re seeing, then I validate it, and then 
I fold that into my analysis and forecast in such a way that that Superintendent or the 
other crew’s Superintendent can see that guy took the information we provided and is 
using it. There’s nothing that builds street cred with the ground pounders [more] than 
seeing their information being used.” 



 10 

 
Another stated: 

“If they can get a good justification from someone, such as myself, on why I’m 
forecasting that [winds gusting to 40 miles an hour], what leads me to believe that that’s 
gonna happen, and I can tell them in plain terms that they can understand and they can 
ask questions and get answers and there’s a good understanding, they’re gonna run with 
my assessment and they will make changes accordingly on their operational tactics.” 

 
 
2) Consider the sensitivity of fire-weather tools to various sources of input error. 
 
As part of this project, we collaborated with other fire weather researchers to leverage results 
from a concurrent study that explored the sensitivity of fire weather forecasts on fire behavior 
predictions (Page et. al. 2018). Specifically, they found that forecasts of air temperature and 
relative humidity performed well with root-mean-square errors (RMSEs) of about 2°C and 
~10%, respectively. However, they found a strong sensitivity of fire spread models to wind 
speed errors and they also found that wind speed was consistently underpredicted when observed 
wind speeds exceeded about 4 m s−1, with mean fractional bias (MFB), and mean bias error 
(MBE) values of approximately −15% and −0.5 m s−1, respectively. The same fire spread model 
and underlying algorithms are used in both the US Fire Behavior Prediction System and the US 
National Fire Danger Rating System and the results from this concurrent study were sufficient to 
provide the scientific basis for the development of the fire behavior scenarios used in the choice 
experiments. We leveraged this information about fire model input sensitivity to design scenarios 
for an example wildfire that varied temperature, relative humidity and windspeed inputs into 
FlamMap to produce fire spread maps for the next 72 hours and these scenarios were included 
into the choice experiments to explore the sensitivity of weather inputs on decision making.  
 
3) Assess the sensitivity of fire management decisions to fire-weather variables. 
 
To address this objective, we implemented a web-based survey to examine how decisions about 
whether to engage in direct or indirect attack. Survey respondents were FMOs within the USFS 
(n = 182). Respondents were very experienced in fire management; they had an average of 24 
years of experience in fire management overall and had served in their current position for an 
average of 8 years. Respondents had served in multiple different roles; 32% indicated they most 
frequently served as division supervisors, 26% as incident commanders (Type 1 – 3), 18% as 
operations section chiefs, and 24% in other roles (e.g., technical specialists, safety officers, and 
task force leaders). Most of our respondents (88%) identified as male and a majority (69%) had 
completed a bachelor’s degree or higher level of formal education.  
 
On average, respondents were more likely to indicate the USFS encourages direct than indirect 
attack and they felt both approaches were equally risky. Respondents had moderate to high 
confidence in all weather forecasts, indicating that forecasts were reliable 51 – 75% of the time. 
However, we did find that average confidence differed significantly across models (df = 3, F = 
16.003. p < .001) and respondents indicated less confidence in precipitation and wind forecasts 
than humidity forecasts or weather forecasts in general (pairwise t-test; p < .05). 
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After reading the introduction to the fire scenario, participants were asked to indicate whether 
they believed direct or indirect attack would be preferable for the described scenario. Our 
intention was for the description to be ambiguous and we expected roughly equal numbers to 
prefer each option. In practice, two-thirds (68%) of respondents indicated a preference for 
indirect attack as a means of managing our described scenario. 
 
At this point in the survey, respondents were told whether the initial team had decided to engage 
in direct or indirect attack. Respondents were randomly assigned to this experimental condition; 
103 were assigned to the first condition and informed that the initial attack team had decided to 
indirectly attack the fire during the first 48 hours while 79 respondents were assigned to the 
second condition and were told the initial attack team had decided to engage in direct attack. In 
each case, participants were then presented with different sets of forecast conditions and asked to 
indicate under which set of conditions they would switch from the initial tactical approach 
employed by the original management team. These forecasts varied five attributes – forecasted 
precipitation, forecasted humidity, forecasted wind, time in fire season in which the fire was 
occurring, and the energy release component.  
 
Condition 1: Switching from indirect to direct attack 
In the first condition, respondents chose whether to switch from indirect to direct attack. 
Seasonality (the time in year when the fire event was described as occurring) was the most 
important attribute influencing decision to switch from indirect to direct attack (average 
importance score = 37.40; see Table 3). Respondents indicated a stronger preference to switch to 
direct attack when it is early versus middle or late in the season. Wind was the second-most 
important attribute (average importance score = 19.31 indicating it is approximately half as 
important as seasonality), with respondents preferring to switch to direct attack when the 
forecasted wind was low (described as slightly windy) compared to when the forecasted wind 
was high (described as very windy). Precipitation was the third most important attribute (average 
importance = 18.74). Respondents have a stronger preference for switching to direct attack when 
wetting rain is forecasted compared to no rain in the forecast. ERC was the fourth most 
important attribute (average importance = 16.15). Interestingly respondents did not have clear 
linear preferences with regards to ERC. Humidity was the least important attribute (average 
importance = 8.41), with respondents preferring to switch to direct attack when humidity was 
high (described as humid) compared to when forecasted humidity was low (described as dry).  
 
Responses indicated that the ideal conditions for switching to direct attack would be a fire 
occurring early in the fire season with wetting rain, high humidity, and slight wind forecasted, 
with ERC trending towards 90%. This combination of weather factors suggests moderate fire 
behavior early in the fire season.  
 
Additionally, respondents indicated they preferred to continue to indirectly attack all three fires 
presented to them in nearly half of all cases (48% of all choice sets). Indeed, only some 
combinations of attributes led to scenarios where switching to direct attack was viewed as 
preferable to continuing to engage in indirect attack. For example, while the ideal conditions for 
switching to direct attack described above had a greater utility than continuing to engage in 
indirect attack, if these same sets of forecasted conditions occurred in the middle or late in the 
season, respondents then indicated a preference to continue to engage in indirect attack.  
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Table 3: Importance of attributes across choice experiments 
 
 Condition 1: Indirect to 

direct attack 
Condition 2: Direct to 

indirect attack 
Attribute Average 

importance 
Standard 
deviation 

Average 
importance 

Standard 
deviation 

Precipitation 18.74 12.46 31.46 14.23 
Humid 8.41 3.42 10.97 4.97 
Wind 19.31 7.71 12.44 5.42 
Seasonality 37.40 12.85 23.15 16.35 
Energy Release Component 16.15 7.50 21.97 8.69 

 
 
Condition 2: Switching from direct to indirect attack 
Forecasted precipitation was the most important attribute (average importance = 31.46; see table 
3) when deciding whether to switch from direct to indirect attack. Specifically, respondents 
preferred to switch to indirect attack when there was no rain in the forecast. Seasonality was the 
second most important attribute (average importance = 23.15) with respondents preferring to 
switch to indirect attack later in the season. ERC was the third most important attribute (average 
importance = 21.97), primarily driven by the relatively low utility associated with the attribute 
level where ERC was described as trending towards 60% compared to the other levels (stable at 
80% or trending towards 90%). Wind was the fourth most important attribute (average 
importance = 12.45) and respondents did not express clear linear preferences regarding the 
influence of wind on decisions to switch to indirect attack. Humidity was the least important 
attribute (average importance = 10.97) and respondents preferred to switch to indirect attack 
when forecasted humidity was low (i.e., dry) compared to when forecasted humidity was high 
(i.e., humid).  
 
These results indicate that the ideal conditions to switch to indirect attack would be a fire with no 
rain forecasted, low humidity and high wind, occurring late in the season with ERC trending 
towards 90%. This combination of weather and fuel factors suggests extreme fire behavior, with 
a higher chance of a season-ending event on the horizon.  
 
In most of the choice sets (92%), respondents chose to switch to indirect attack for at least one of 
the described scenarios. Respondents preferred to stay with direct attack for only a few limited 
combinations of attributes. For example, respondents preferred to stick with direct attack when 
there was forecasted rain, conditions were described as humid and windy, early in the season 
with the lowest ERC. However, if the same scenario were presented but without rain forecasted, 
responses suggest a preference to switch to indirect attack. Put another way, respondents were 
only willing to continue with direct attack for some scenarios where wetting rain was forecasted, 
otherwise they preferred to switch to indirect attack. 
 
Prefer status quo 
For some scenarios, respondents preferred to continue the original approach in both conditions. 
For example, for some scenarios where wetting rain was forecasted and it was not early in the 
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season, respondents in both conditions preferred to continue with the initial strategy regardless of 
whether the initial team had engaged in direct or indirect attack. It is unclear why respondents 
preferred the default in these cases. It may be that the relative gain in utility was not believed to 
be worth the cost of changing tactics, or it may be that the fire managers did not have a preferred 
tactic in those circumstances and defaulted to the previous team’s tactics.    
 
Influences on switching 
In an open-ended question, respondents were asked to indicate what had influenced their 
decision regarding switching approaches. In both conditions, the most commonly mentioned 
attribute influencing the decision to switch to direct or indirect attack was the time in the season 
the fire occurred (noted by 47% in condition 1 and 54% in condition 2). Respondents in 
condition 1 (switch to direct attack) then mentioned wind (28%) while ERC (16%), precipitation 
(15%), and humidity (8%) were mentioned less frequently. Respondents in condition 2 (switch to 
indirect attack) cited precipitation (27%), wind (26%), and ERC (19%) with a relatively small 
number mentioning humidity (8%). 
 
Besides comments on weather and seasonality, respondents also indicated their decisions were 
based on perceived impacts to firefighter safety (21% condition 1, 11% condition 2) and 
considerations regarding the size and behavior of the current fire (11% condition 1, 20% 
condition 2). 
 

Conclusions and Implications for Management/Policy and Future Research 
 
Results developed through this project have a number of implications for how to provide weather 
information to decision makers in general and how to improve weather forecast models to 
support wildfire management decisions.  
 
First, our results highlight the importance of considering how information is actually used by fire 
managers. While previous researchers have highlighted the types of information necessary for an 
operations-focused decision support tool (Dunn, Thompson, & Calkin, 2017), results from this 
project highlight that decision support tools should be designed and evaluated with the decision 
strategies used by fire managers in mind. Tools should be designed with the decision strategies 
of fire managers in mind. It is important to understand what information they use and how they 
make use of it to develop tools that successful meet their needs.  
 
Weather information can be an important influence on tactical decision-making and success in 
wildfire management (Countryman, 1972; Rapp et al., 2020). However, our results highlight that 
weather information may not be used or interpreted consistently across decision-makers. Rather, 
what information fire managers use and what they learn from it depends on the context; weather 
information does not exist in a vacuum. The relative importance of different variables appears to 
change across the fire season. That said, our results did suggest there was a relatively consistent 
lack of confidence in wind and precipitation forecasts. This is particularly important as wind and 
precipitation were the most important pieces of weather information for decision-making. Thus, 
we suggest prioritizing efforts to improve the forecast accuracy where possible in these variable 
and increase confidence in the resulting forecast as appropriate. Typical fire weather forecasts 
are derived from the National Digital Forecast Database (NDFD) which are produced 
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continuously across the United States by the US National Weather Service (Glahn & Ruth, 
2003). A recent study has shown that the NDFD consistently underpredicts windspeeds when the 
winds are stronger than about 4 m/s (~9 mi/hr) (Page, Wagenbrenner, Butler, Forthofer, & 
Gibson, 2018). Winds are particularly difficult to forecast due in part to local terrain influences 
and extensive work is ongoing to improve wind forecasts in complex terrain. Models that 
downscale wind forecasts to correct for terrain influences, such as WindNinja (Wagenbrenner, 
Forthofer, Lamb, Shannon, & Butler, 2016), show promise in improving local-scale wind 
forecasts. While it is reasonable to expect increased confidence in the models as their accuracy 
improves, such improvements are not guaranteed to occur automatically. In addition to 
improving model accuracy, it will also be important to understand the specific concerns held by 
fire management personnel. Beyond model accuracy, personnel may be resistant to using models 
and prefer to rely on their own intuition as a symbol of competence and expertise (Noble & 
Paveglio, 2020; Rapp et al., 2020). In other cases, managers may not view the models as 
problematic but may have concerns about the perceived competence of the modelers (Noble & 
Paveglio, 2020; Rapp et al., 2020). Addressing these different concerns will require different 
approaches; potentially including how users relate model use and perceived job competency, 
providing updates on improvements in model accuracy, or providing opportunities to develop 
relationships between managers and technical specialists. 
 
Second, results here also indicate the complex nature of decision support. Effective decision 
support is about much more than simply providing information or even providing accurate and 
reliable information. Ultimately, increasing the use of models will not only rely on improving 
their accuracy but also increasing the confidence that fire managers have in model output and the 
utility they see in how the provided information contributes to improving their decisions. The 
complexity in decision support was recognized by many of the technical specialists that 
participated in this study. Through their experiences, they found that model results could be 
improved through tailoring them to local conditions. Moreover, they recognized managers were 
more likely to consider the models when the output was not simply provided to managers but, 
rather, where models were calibrated based on ongoing dialogue between the technical 
specialists and fire managers and where they could discuss the rationale for decisions made in 
the models. Several of the specialists included here recognized that these discussions were more 
likely to occur when they were in the field with the IMTs rather than providing remote support. 
 
These results suggest the importance of training the technical specialists not just in the technical 
aspects of the models but also in communication and other soft skills. While such skills may be 
seen as tangential to the developing the depth of expertise needed to run the models effectively, 
they may be as important to supporting decisions as the quality of the provided information. 
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Appendix B: List of Completed/Planned Scientific/Technical 
Publications/Science Delivery Products 

 
 
 
1. Articles in peer-reviewed journals  

 
Rapp, C., E. Rabung, R. Wilson, and E. Toman. 2020. Wildfire decision support tools: an 
exploratory study of use in the United States. International Journal of Wildland Fire. 29(7): 
581-594 https://doi.org/10.1071/WF19131  
 
Rapp, C., R. Wilson, E. Toman, and W.M. Jolly. In Review. Assessing the role of short-term 
weather forecasts in fire manager tactical decision-making: a choice experiment. 
 

2. Technical reports 
 
Olsen, C., C.E. Rapp, E. Toman, R. Wilson, W.M. Jolly. 2018. Wildland fire managers’ use 
of fire weather data in strategic and tactical decision-making across the US (Western focus): 
Phase One Interview Findings.  
 

3. Text books or book chapters  
 
None 
 

4. Graduate thesis (masters or doctoral)  
 
 
 

5. Conference or symposium proceedings scientifically recognized and referenced (other than 
abstracts).  
 
 
 

6. Conference or symposium abstracts  
Rapp, C.E., E.A.L. Rabung, R.S. Wilson, and E. Toman. 2019. Wildfire decision support 
tools in theory versus in the field: an exploratory study. Arlington, VA. Society for Risk 
Analysis Annual Meeting. (December) 
Rapp, C., Wilson, R., E. Toman and W.M. Jolly. 2021. Assessing the role of short-term 
weather forecasts in fire manager tactical decision-making. Presented at the Society for Risk 
Analysis Annual Meeting in the symposium “Managing and Reducing the Risk of Wildfire 
through Response and Fuel Treatment”. Virtual Meeting. (December) 
 

7. Posters 
 

8. Workshop materials and outcome reports  



 19 

 
9. Field demonstration/tour summaries  

 
10. Website development  

 
11. Presentations/webinars/other outreach/science delivery materials. 
 
Rapp, C., E. Rabung, R. Wilson, and E. Toman. In Prep. Research brief - Wildfire decision 
support tools: an exploratory study of use in the United States. Lake States Fire Science 
Consortium Research Brief. 
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Appendix C: Metadata 
 

 
1. Data Types 
Our data included (1) qualitative data from in-depth interviews with fire management personnel, 
(2) quantitative data from structured surveys, and (3) fire weather climatology and simulated fire 
model values. The qualitative data will include interview audio files and transcripts (.doc files), 
which were coded to identify themes. Study participants were assigned a unique identifier and all 
identifying information was removed from the transcripts. Coding and theme building were 
completed using the qualitative data analysis software programs MaxQDA and NVivo. The 
quantitative data from the surveys will include spreadsheets of coded survey data that will be 
entered and stored in Excel. Analysis of the quantitative data will take place in the quantitative 
data analysis software programs SPSS and Latent Gold.  
 
2. Long-Term	Data	Management	
	
Data	Repository	
Qualitative data cannot be made anonymous and will not be released, but will be kept for at least 
five years on our restricted-access institutional servers, or as instructed by the Institutional 
Review Board.  
 
De-identified survey data and all metadata documents will be deposited with the U.S. 
Department of Agriculture Research Data Archive (https://www.fs.usda.gov/rds/archive/). These 
data consist of de-identified survey responses from 182 USDA Forest Service Fire Management 
Officers who completed our web-based survey and embedded choice experiment. The data are 
available as .csv files and include numeric responses to likert-scale and multiple choice questions 
included in the survey.  


