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Abstract 
A system consisting of two enclosures has been developed to characterize wildand fire behavior: 
The first enclosure is a sensor/data logger combination that measures and records 
convective/radiant energy released by the fire. The second is a digital video camera housed in a 
fire proof enclosure that records visual images of fire behavior. Together this system provides a 
robust relatively inexpensive, system for characterizing wildland fire behavior.  
 
Additional keywords: Fire behavior, fire documentation, fire instrumentation 

Introduction 
Computer models that are used for day-to-day fire management are largely empirical (Rothermel 
1972); examples include BEHAVE(Andrews 1986), Farsite (Finney 1998). Wildland fire 
researchers have recognized the benefit of insitu measurements of fire intensity and behavior as 
one critical component of efforts to develop improved fire decision support models. Actual 
measurements of fire intensity benefit wildland fire behavior research and modeling by providing 
data for evaluating and developing fire models. Past measurements consisted primarily of 
observations of rate of spread, gas temperatures and fuel consumption and have been both field 
based (Barrows 1951; Cheney et al. 1993; Fons 1946) and laboratory based (Catchpole et al. 
1998; Fons 1946; Rothermel 1972) . Such studies provided useful data and observations; 
however with the advent of modern numerical computers, the complexity of wildland fire models 
has increased (Call and Albini 1997; Linn et al. 2002; Mell et al. 2007). New mathematical 
models include additional physics which led to the need for additional measurements, 
particularly of the basic heat and chemical processes occurring in fire. This need has been 
addressed through both field (Alexander 1990; Hiers et al. 2009; Stocks et al. 2004) and 
laboratory experiments (Catchpole et al. 1998) 

However quantitative measurements of energy and mass transport in wildland fire have been 
relatively sparse. The reasons are likely related to the risks and hazards to humans and equipment 
associated with wildland fires as well as the high degree of uncertainty in the weather and fuel 
conditions. Additionally, only recently has the technology become readily available at a cost that 
allows scientists to capture the desired measurements over the range of possible conditions. 
Some studies have been published that focus on relating fire intensity to emissions (Ward and 
Radke 1993), others on statistical modeling of fire behavior (Stocks et al. 1989). 

Based on experience from an array of field experiments (Butler et al. 2004; Putnam and 
Butler 2004; Stocks et al. 2004) a field deployable, fire resistant, programmable sensor array 
mounted in a fire resistant enclosure and coupled with a video imaging system has been 
developed. This system reduces the safety risks to research team members and improves utility 
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The dataloggers used are Campbell Scientific® model CR1000. The dataloggers are capable 

of logging over one million samples, providing 20 hours of continuous data logging at 1hz. This 
logger is user-programmable and accepts a wide range of analog and digital inputs and outputs. It 
is thermally stable and has been relatively insensitive to damage incurred in shipping and 
handling. Alternative and lower cost dataloggers are available but generally do not have all of the 
features found in the aforementioned. Currently, all FBP’s incorporate a Medtherm® Dual 
Sensor Heat Flux sensor (Model 64-20T) that provide incident total and radiant energy flux, a 
type K fine wire thermocouple (nominally 0.13 mm diameter wire) for measuring gas 
temperature, a custom designed narrow angle radiometer (Butler 1993) to characterize flame 
emissive power, and two pressure based flow sensors (McCaffrey and Heskestad 1976) to 
characterize air flow. Table 1 provides details about individual sensors and their engineering 
specifications. 
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Table 1. Insitu Fire Behavior Package (FBP) Specifications 
Narrow Angle Radiometer   
Sensor 20-40 element thermopile  
Spectral Band of Sensor 0.15 – 7.0 μm with sapphire window 
Field of View ~4.5º controlled by aperture in sensor housing 
Transient Response Time constant of sensor nominally 30msec 
Units of Measurement Calibrated to provide emissive power of volume in FOV in kW-m-2 
Total Energy Sensor Medtherm Corp® Model 64-20T Dual total Heat Flux 

Sensor/Radiometer 
Sensor Schmidt-Boelter Thermopile 
Spectral Band of Sensor All incident thermal energy 
Field of View ~130º controlled by aperture in sensor housing 
Transient Response < 290msec 
Units of Measurement Total heat flux incident on sensor face in kW-m-2 
Hemispherical Radiometer  Medtherm Corp® Model 64-20T Dual total Heat Flux 

Sensor/Radiometer 
Sensor Schmidt-Boelter Thermopile (Medtherm Inc) 
Spectral Band of Sensor 0.15 – 7.0 μm with sapphire window 
Field of View ~130º controlled by window aperture 
Transient Response < 290msec 
Units of Measurement Radiant energy incident on sensor face in kW-m-2 
Air Temperature  
Sensor Type K bare wire butt welded thermocouple, new, shiny, connected to 

27ga lead wire 
Wire Diameter 0.13mm 
Bead Diameter ~0.16-0.20mm 
Units of Measurement Degrees Celsius 
Air Mass Flow  
Sensor SDXL005D4 temperature compensated differential pressure sensor 
Pressure Range 0-5 in H2O 
Sensor Design Pressure sensor is coupled to custom designed bidirectional probe with 

±60º directional sensitivity. 
Units of Measurement Calibrated to convert dynamic pressure to velocity in m-s-1 assuming 

incompressible flow 
Sensor Housing Dimensions 150× 180 × 270 (mm) 
Housing Weight 7.7 kg 
Insulation Material Cotronics Corp® 2.5cm thick ceramic blanket 
Tripod Mount ½ inch female NCT fitting permantly mounted to base of enclosure. 
Power Requirements 12V DC 
Power Supply Rechargeable Internal Battery 
Data Logging Campbell Scientific Model CR1000 
Sampling Frequency Variable but generally set at 1 Hz 
File Format ASCII 
 
 
The second part of the system is a fire proof enclosure housing a video camera and is termed 

the In-situ Video Camera (IVC). The IVC measures 10 cm by 18 cm by 19 cm and is constructed 
of 1.6 mm aluminum with a weight of approximately 1.8 kg (fig. 2). The front of the IVC has  
two circular windows nominally 45 and 20 mm in diameter. A double lens configuration of high 
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Fig. 4 presents typical heat flux measurements from the total and radiant sensors. The 
sensors are calibrated to provide total incident energy flux and total radiant incident flux. In 
theory the convective heat flux at the sensor face would be the difference between the two 
sensors. The flux on the sensor face may not necessarily represent that incident on a nearby 
vegetation component. Surface incident energy flux is highly dependent on the properties of the 
surface itself. The sensors come from the factory calibrated against a high temperature source 
that emits the bulk of its energy in the near infrared. This source does not represent the spectral 
energy source produced by a typical wildland fire. The thermal transmission of the window on 
the radiometer has specific spectral properties. Thus the energy transmitted to the sensor in the 
calibration environment is not the same as that transmitted in the fire environment. Without 
additional calibration using a spectrally broad source, all that can be deduced from the 
radiometer data is that they represent the energy that would be incident on the face of the sensor  

 
 

if the source were similar to the calibration source. It is recommended that the radiometers be 
calibrated using a blackbody source over the expected range of energy flux to minimize error due 
to the spectral differences between the manufacturer calibration and that of a typical wildland 
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Fig. 4—Heat flux data from the FBP system.
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fire source. However, ultimately, unless one uses a correction term determined from a known 
source (Frankman et al. 2010), uncertainty exists in the radiation measurement. 

Type K fine wire thermocouples are used to measure air temperature (fig. 5). The use of new 
(shiny therefore low emissivity), small diameter (reduces radiant energy absorption), 
thermocouples can decrease measurement uncertainty (Ballantyne and Moss 1977; Satymurthy et 
al. 1979; Shaddix 1998). It is estimated that the measurements collected insitu using the 0.13mm 
diameter thermocouples specified above are subject to a measurement uncertainty of nominally 
±50K but measurement uncertainty can be much larger depending on the temperature of the gas, 
the surroundings and the radiative properties of the local environment. For small or thin flames 
the uncertainty can be hundreds of degrees depending on the condition and size of the 
thermocouple (Pitts et al. 1999). 

Fig. 5 presents typical flow measurements using differential pressure sensors (McCaffrey 
and Heskestad 1976). These sensors have been used extensively in laboratory experiments to 
characterize the flow field in and around flames generated by woody fuels (Anderson et al.  
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2010). They are designed to capture the general horizontal or vertical flow given a nominally 
±30 degree acceptance angle. The sensors are calibrated by comparison to a known sensor in a 
controlled flow. Because these sensors are based on pressure differences between the dynamic 
and static ports they are sensitive to changes in gas density as would occur due to temperature 
variations. Therefore the flow measurements require an air temperature measurement for 
determination of density. Additionally no correction is made for changes in the relative humidity 
of the air flow. Given the uncertainty associated with the air temperature measurement, it is 
estimated that the flow measurement uncertainty is approximately ±30% and may be larger. 

In practice these measurement systems should be deployed with careful measurements of 
pre and post fire vegetation consumption. One of the challenges associated with characterizing 
physical processes in fire is the spatial heterogeneity introduced by variations in vegetation, 
terrain and weather. The sensors described here sense energy and mass transport at a very small 
scale relative to that of wildland fires. Consequently, another challenge is how to interpret data 
from these systems over the broad spatial scales characteristic of wildland fire. One approach is 
to deploy enough sensors to collect a statistically representative distribution. Alternatively, 
ground based sensors can be used to evaluate and correct remotely sensed data that represent 
spatial scales. Measurement success depends on a number of factors, including equipment 
reliability and weather. The automatic trigger option has increased the success of research efforts 
to quantify fire behavior; however, even in ideal conditions a realistic success rate of 50-80% is 
likely. 

 
Conclusions 
The FBP and IVC from a relatively low cost, light weight, ruggedized, portable, and 
programmable sensor system designed to provide measurements of energy and mass transport in 
wildland fires. The designs are flexible and can be adapted to fit other sensors and data loggers. 
When a fire is sensed, the fire behavior sensor package begins logging data and sends a wireless 
signal to activate the video package. This system can be constructed from readily available 
materials using basic tools and techniques. It seems that the use of sensors like those described 
here is the only practical solution to gathering quantitative information about energy and mass 
transport in wildland fires, at least in the near term. 
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