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Abstract:  The USFS Remote Sensing Applications Center (RSAC) and the USGS EROS Data Center (EDC) 
produce Burned Area Reflectance Classification (BARC) maps for use by Burned Area Emergency Rehabilitation 
(BAER) teams in rapid response to wildfires.  BAER teams desire maps indicative of soil burn severity, but 
photosynthetic and non-photosynthetic vegetation also influences the spectral properties of post-fire imagery.  Our 
objective was to assess burn severity both remotely and on the ground at six 2003 wildfires.  We analyzed fire-
effects data from 34 field sites located across the full range of burn severities observed at the Black Mountain Two, 
Cooney Ridge, Robert, and Wedge Canyon wildfires in western Montana and the Old and Simi wildfires in southern 
California.  We generated Normalized Burn Ratio (NBR), delta Normalized Burn Ratio (dNBR), and Normalized 
Difference Vegetation Index (NDVI) indices from Landsat 5, SPOT 4, ASTER, MASTER and MODIS imagery.  
Pearson correlations between the 44 image and 79 field variables having an absolute value greater than 0.5 were 
judged meaningful and tabulated in overstory, understory, surface cover, and soil infiltration categories.  Vegetation 
variables produced a higher proportion of meaningful correlations than did surface cover variables, and soil 
infiltration variables the lowest proportion of meaningful correlations.  Soil properties had little measurable 
influence on NBR, dNBR or NDVI, particularly in low and moderate severity burn areas where unconsumed 
vegetation occludes background reflectance.  BAER teams should consider BARC products much more indicative of 
post-fire vegetation condition than soil condition.  Image acquisition date, in relation to time of field data collection 
and time since fire, appears to be more important than type of imagery or index used.  We recommend preserving 
the raw NBR or dNBR values in an archived map product to enable remote monitoring of post-fire vegetation 
recovery.  We further recommend that BAER teams rely on the continuous BARC-Adjustable (BARC-A) product 
(and assign their own severity thresholds as needed) more than the classified BARC product, which oversimplifies 
highly heterogeneous burn severity characteristics on the ground. 
 
 

INTRODUCTION 
 
The USDA Forest Service Remote Sensing Applications Center (RSAC) assists Burned Area Emergency 
Rehabilitation (BAER) teams responding to wildfires at a national scale by providing Burned Area Reflectance 
Classification (BARC) products derived from available satellite and airborne imagery.  BARC products are derived 
from either the Normalized Burn Ratio (NBR) or delta NBR (dNBR) indices (Key and Benson, 2003b).  Although 
dNBR is the default choice as a burn severity indicator, Bobbe et al. (2003), in a field validation of BARC products, 



found dNBR to be no more accurate than NBR.  Landsat imagery is the default choice for burn area mapping but 
SPOT, ASTER, MODIS and other imagery are important supplements. 
 
There is a need to further assess the utility of the NBR and dNBR, and of the various image types, for burn severity 
mapping.  We conducted an extensive field validation campaign at four wildfires in western Montana and two in 
southern California.  Our objective was to assess how well NBR and dNBR, calculated from several image types, 
relate to a variety of field attributes with relevance to fire severity. 
 
 

METHODS 
 
Wildfires characterized 
 
We characterized post-fire effects in the field, across the full range of fire severities, soon after six large wildfire 
events in 2003 (Fig. 1).  The Black Mountain Two and Cooney Ridge wildfires, located west and east, respectively, 
of Missoula, Montana together burned over 10,000 ha through much of August and into September.  Beginning in 
mid-July and for the next two months, the Robert and Wedge Canyon fires west of Glacier National Park burned 
nearly 45,000 ha combined.  In less than two weeks from late October to early November, the Old and Simi 
wildfires north of San Bernadino and Simi Valley, respectively, collectively burned over 80,000 ha in southern 
California (Fig. 2). 
 

 
Figure 1; Locations of six 2003 wildfires sampled in western Montana and southern California. 



 
 

 
Figure 2; Burned Area Reflectance Classification (BARC) maps of the six 2003 wildfires sampled (Fig. 1), with 35 
field sites plotted in black.  At the Cooney Ridge fire, the easternmost site (on the fire perimeter) was excluded from 
the analysis because it burned after satellite image acquisition. 
 
 
Image Processing 
 
The dNBR or, if pre-fire imagery is unavailable, the NBR, is used to produce the BARC product and the continuous, 
BARC-Adjustable (BARC-A) product from which the BARC map is derived.  The BARC-A product is simply the 
continuous dNBR (or NBR) values stretched across the dynamic range of 8-bit data (0-255).  Jenks Natural Breaks 
logic is used to assign breakpoints to the continuous BARC-A variable and produce the categorical BARC variable.  
Delivering the BARC-A product to BAER teams allows them to assign their own breakpoints based on ground 
observations.  After classifying the BARC image, RSAC overlays the National Land Cover Database (NLCD) 
vegetation layer.  Burned grasslands, for example, are often misclassified as “high” although grasslands rarely burn 
severely, and so cause little concern for BAER teams.  RSAC thus uses the NLCD GIS overlay to catch any 
grassland areas classified as “high” during the NBR process and reclassifies them as “low.” 
 
RSAC selects satellite images for mapping wildfires based on the availability of a cloud-free scene as soon as 
possible after the need for BARC products is identified.  Landsat imagery is preferred for burn mapping due to its 
desirable temporal, spatial and spectral characteristics (Hudak et al. 2002).  SPOT 4 has the advantage of being 
pointable, which enabled simultaneous acquisition of the Black Mountain and Cooney Ridge fires, and similarly the 
Robert and Wedge Canyon fires.  However, SPOT imagery has the distinct disadvantage of being much more 



expensive than Landsat (Clark et al. 2003).  In addition, the substantial Landsat image archive greatly improves the 
possibility of obtaining a pre-fire image (acquired at approximately the same time of year) necessary for calculating 
dNBR, which is the currently preferred index for creating BARC products. 
 
Landsat 5 or SPOT 4 images were available for the four Montana wildfires when needed.  Timely SPOT 4 images 
were not available for the two southern California wildfires, and neither Landsat nor ASTER images were available 
when needed.   RSAC thus turned to coarser spatial resolution MODIS imagery to initially map these fires and in the 
case of the Simi fire, to the airborne MASTER sensor based at the NASA Jet Propulsion Laboratory (Clark et al. 
2003).  Our six field sites at the Simi fire were situated just east of the Simi fire MODIS-derived BARC products, so 
we were unable to assess these, although we did calculate dNBR, NBR and NDVI indices from the MODIS image 
clipped to a larger extent.  At the Old fire, our six field sites were located in the only cloud-free portion of a 3-Nov-
03 Landsat 5 image, thus we calculated dNBR, NBR and NDVI indices even though no BARC-A product was made 
from this image.  RSAC did produce BARC products from Landsat 5 and ASTER images when they later became 
available, in part to achieve a more complete assessment in this study (Table 1). 
 
 
Table 1; Images used to generate dNBR, NBR and NDVI indices at the six wildfires sampled. 
 
Burn Area Sensor Pre-Fire Post-Fire Indices BARC 
Imaged Used Image Date Image Date Calculated Products 
Black Mountain 2 Landsat-TM 10-Jul-02 25-Oct-03 dNBR, NBR, NDVI dNBR 
Black Mountain 2 / Cooney Ridge SPOT-Xi  1-Sep-03 NBR, NDVI NBR 
Cooney Ridge Landsat-TM 10-Jul-02 31-Aug-03 dNBR, NBR, NDVI dNBR 
Robert / Wedge Canyon SPOT-Xi  10-Aug-03 NBR, NDVI NBR 
Robert / Wedge Canyon Landsat-TM 21-Aug-00 25-Oct-03 dNBR, NBR, NDVI dNBR 
Old Landsat-TM 7-Oct-02 3-Nov-03 dNBR, NBR, NDVI  
Old ASTER 7-Oct-02 (TM) 18-Nov-03 dNBR, NBR, NDVI dNBR 
Old Landsat-TM 7-Oct-02 19-Nov-03 dNBR, NBR, NDVI dNBR 
Old / Simi MODIS 27-Sep-03 5-Nov-03 dNBR, NBR, NDVI dNBR* 
Simi MODIS 27-Sep-03 28-Oct-03 dNBR, NBR, NDVI  
Simi MASTER 12-Sep-02 (TM) 1-Nov-03 dNBR, NBR, NDVI dNBR 
Simi Landsat-TM 12-Sep-02 10-Nov-03 dNBR, NBR, NDVI dNBR 
*5-Nov-03 BARC products were only produced for the Old fire due to cloud cover over the Simi fire. 
 
 
We assessed the NBR and dNBR indices, along with NDVI because of its immensely broad use in remote sensing of 
vegetation properties and potential applicability for burn severity mapping as well.  The bands used to calculate 
these three indices depend on the type of sensor (Table 2) but follow the formulas,   
 
 

NBR = (NIR – SWIR) / (NIR + SWIR)     (1) 
 

dNBR = NBRpre-fire – NBRpost-fire      (2) 
 

NDVI = (NIR – RED) / (NIR + RED)     (3) 
 
 
where RED denotes the red band, NIR denotes the near infrared band, and SWIR denotes the short wave infrared 
band.  Input images received from RSAC were already georegistered and atmospherically corrected to at sensor 
reflectance.  Output images of NBR, dNBR and NDVI were created in ERDAS Imagine, and pixel values at the 
field site locations were extracted in Arc/Info GRID. 
 
 



Table 2; Characteristics of the spectral bands used to calculate dNBR, NBR and NDVI indices from the image types 
analyzed. 
 
Spectral Spatial Red Red Band NIR NIR Band SWIR SWIR Band Fires 
Sensor Resolution (m) Band Range (nm) Band Range (nm) Band Range (nm) Mapped 
ASTER 30 2 630-690 3 760-860 6 2185-2225 Old fire 
Landsat-TM  30 3 630-690 4 760-900 7 2080-2350 All six fires 
MASTER 31.5 5 630-690 9 845-885 21 2135-2185 Simi fire 
MODIS 250 1 620-670 2 841-876 7 2105-2155 Two CA fires 
SPOT-Xi 20 2 610-680 3 780-890 4 1580-1750 Four MT fires 
 
 
Field Data Collection 
 
Field data were collected Sep-Oct (Montana) and Dec (California) of 2003 at 35 sites across 6 wildfires as follows: 
Black Mountain (4), Cooney Ridge (7), Robert (7), Wedge Canyon (5), Old (6) and Simi (6).  One Cooney Ridge 
site was excluded because it burned only after the satellite images used in this analysis were acquired (Fig. 2).  The 
34 remaining sites spanned the full range of burn severities (low, moderate and high) at each wildfire.  Burned sites 
were classified as low, moderate or high severity if tree crowns were predominantly green, brown or black, 
respectively.  More low severity sites were sampled than moderate, and more moderate than high, because we noted 
while in the field that spatial heterogeneity in burn severity characteristics increased as burn severity decreased, 
confirming a finding of Turner et al. (1999). 
 
Each site was centered 80-300 m from the nearest access road, in a random location within a broadly representative 
area of consistent stand and severity condition.  At each site, nine 9 m x 9 m plots were situated along mutually 
bisecting transects in a 130 m x 130 m area.  One transect was oriented along the prevailing slope with the other 
transect perpendicular to it, or across the slope.  A plot was centered at the center and ends of each transect, 60 m 
from site center, with another plot centered in between 20, 30 or 40 m away.  Each plot was comprised of fifteen 1 
m x 1 m subplots arrayed in 3 rows with midlines spaced 4 m apart, while subplots in the same row were centered 2 
m apart.  Distances between plot centers were measured using a laser rangefinder, while subplot center points were 
measured using a cloth measuring tape and marked with reusable pin flags.  Plot centers were geolocated with a 
Trimble GeoExplorer, logging a minimum of 150 positions, then subsequently differentially correcting and 
averaging them.  Subplot positions were calculated based on their known, systematic distance and bearing from plot 
center. 
 
At the subplot scale, fractional cover of green vegetation, rock, mineral soil, ash, litter (new and old) and any large 
organics was estimated ocularly, with the aid of a 1 m2 square quadrat built from pvc pipe.  Percent char of each 
cover component was also recorded.  At the plot scale, a small ruler was used to measure depth of new litter 
(deposited post-fire), old litter and duff, and a convex spherical densiometer was used to measure canopy cover.  
Topographic features were also recorded.  At every site, grass, forb, low shrub (greater than breast height) and 
seedling cover was estimated in a 1/750 ha circular plot, high shrubs (less than breast height) and saplings were 
tallied in a 1/100 ha plot, and trees and snags were inventoried in a 1/50 ha plot; these 3 vegetation plots were 
arranged concentrically at site center. 
 
Correlation Analysis 
 
Measured and derived field variables were divided into overstory, understory, surface cover, and soil infiltration 
categories.  Calculated spectral indices were divided into NBR, dNBR, NDVI, NBR-derived BARC-A and dNBR-
derived BARC-A categories (Table 1).  Correlation matrices between field and image variables were generated in R.  
Pearson correlation statistics were then compiled; correlations having absolute values greater than 0.5 were 
considered meaningful, and these were tallied within the field and image categories just named, as well as by sensor 
type and strength of correlation. 
 
 



RESULTS 
 
Overstory and understory vegetation variables produced a higher proportion of meaningful correlations (r > 0.5) 
with the spectral indices (Table 3,4), surface cover variables less (Table 5), and soil infiltration variables the lowest 
proportion (Table 6).   
 
The ASTER sensor produced the highest proportion of meaningful correlations (r > 0.5), followed by MASTER.  
Unfortunately, these images were only available for the Old and Simi fires, respectively, so it’s difficult to separate 
the effect of sensor type from that of acquisition date.  Not surprisingly, the coarser-resolution MODIS sensor 
produced the worst correlations among sensors (Fig. 3), while Landsat-TM and SPOT-Xi were intermediate. 
 
NBR and dNBR burn severity indices produced a higher proportion of meaningful correlations (r > 0.5) with the 
four field variable categories than did NDVI, except for the overstory category (Fig. 3).  Comparing NBR and 
dNBR, dNBR did better than NBR in general, except for the overstory and surface cover categories.  After 
comparing NBR and dNBR for several individual fires (e.g. Cooney Ridge, Fig. 5), NBR appeared to correlate 
better to field attributes when the post-fire image captured immediate post-fire effects.  After several weeks have 
elapsed since burning, dNBR appeared to produce the better correlations. 
 
When comparing burn areas imaged, Cooney Ridge produced the highest proportion of meaningful correlations (r > 
0.5), followed by the other Montana fires (Fig. 4).  The California fires produced the worst relationships, but the 
lack of a tree overstory at many of the California field sites probably explains much of this difference. 
 
 
Table 3; Overstory variables, ranked in descending order according to the number of meaningful correlations with 
image-derived spectral indices.  Column tallies on the left are inclusive of column tallies on the right. 
 
Overstory Variables (N=21) r > 0.5 r > 0.6 r > 0.7 r > 0.8 r > 0.9 
Percent Crown Black 21 19 16 8 3 
Plot Basal Area St. Dev. 14 12 12 11 6 
Percent Overstory Cover Mean 14 12 10 9 6 
Tree Height St. Dev. 14 9 7 6 2 
Percent Crown Green 13 13 8 3 0 
Crown Base Height Mean 12 9 6 2 1 
Trees Per Hectare St. Dev. 12 8 5 5 2 
Live Tree Count 9 8 5 3 0 
Crown Base Height St. Dev. 9 8 5 1 0 
Crown Base Height Minimum 9 8 5 1 0 
Crown Base Height Maximum 9 7 7 7 2 
Trees Per Hectare Sum 9 6 2 0 0 
Tree Height Mean 9 4 2 0 0 
Percent Crown Brown 8 7 5 2 1 
Tree Height Minimum 8 6 4 0 0 
Trees Per Hectare Mean 7 4 1 1 0 
Plot Basal Area Mean 6 5 2 0 0 
Tree Height Maximum 6 3 2 1 0 
Plot Basal Area Sum 5 4 2 0 0 
Percent Overstory Cover St. Dev. 4 1 0 0 0 
Snag Count 3 3 3 2 2 
Total (924 possible) 201 156 109 62 25 
Percentage 21.8 16.9 11.8 6.7 2.7 
 
 



Table 4; Understory variables, ranked in descending order according to the number of meaningful correlations with 
image-derived spectral indices.  Column tallies on the left are inclusive of column tallies on the right. 
 
Understory Variables (N=22) r > 0.5 r > 0.6 r > 0.7 r > 0.8 r > 0.9 
Percent Grass Brown 27 18 7 3 2 
Live High Shrub Count 24 17 9 1 0 
Percent Grass Green 21 15 10 5 1 
Live High Shrub Height Mean 20 11 5 0 0 
Percent Low Shrub Brown 19 16 7 1 0 
Dead High Shrub Count 19 12 7 5 1 
Percent Saplings Dead 17 15 12 8 1 
Dead Sapling Count 17 14 10 4 1 
Percent Grass Black 16 12 7 6 1 
Dead High Shrub Height Mean 12 6 3 3 2 
Percent Low Shrub Black 11 10 7 2 2 
Percent High Shrubs Dead 11 10 6 1 0 
Dead Sapling Height Mean 10 5 3 2 0 
Percent Forb Black 9 8 5 5 4 
Percent Forb Green 9 5 2 2 1 
Live Sapling Count 7 5 2 0 0 
Live Sapling Height Mean 6 6 5 0 0 
Percent Forb Brown 5 3 2 2 1 
Percent Dead Seedling Cover 1 0 0 0 0 
Percent Low Shrub Green 0 0 0 0 0 
Percent Live Seedling Cover 0 0 0 0 0 
Percent Seedlings Dead 0 0 0 0 0 
Total (968 possible) 261 188 109 50 17 
Percentage 27.0 19.4 11.3 5.2 1.8 
 
 
Table 5; Surface cover variables, ranked in descending order according to the number of meaningful correlations 
with image-derived spectral indices.  Column tallies on the left are inclusive of column tallies on the right. 
 
Surface Cover Variables (N=24) r > 0.5 r > 0.6 r > 0.7 r > 0.8 r > 0.9 
Depth Old Litter 14 11 4 3 0 
New & Old Charred Cover 14 7 5 0 0 
Depth Duff 13 7 4 1 0 
New Litter Cover 12 6 0 0 0 
Old Charred Cover 12 5 0 0 0 
New & Old Uncharred Cover 11 6 0 0 0 
Charred Inorganic Cover 11 1 0 0 0 
Old Litter Cover 9 4 1 0 0 
Uncharred Cover 9 1 0 0 0 
Old Uncharred Cover 9 1 0 0 0 
Uncharred Organic Cover 7 2 0 0 0 
Depth New Litter 6 1 0 0 0 
Charred Organic Cover 6 1 0 0 0 
Mineral Soil Cover 4 0 0 0 0 
Light Char Cover 4 0 0 0 0 
Rock Cover 3 1 0 0 0 
Moderate Char Cover 3 1 0 0 0 



Uncharred Inorganic Cover 3 1 0 0 0 
Old Green Cover 1 0 0 0 0 
New Green Cover 0 0 0 0 0 
Tree/Stump Cover 0 0 0 0 0 
Ash Cover 0 0 0 0 0 
Deep Char Cover 0 0 0 0 0 
New & Old Green Cover 0 0 0 0 0 
Total (1056 possible) 151 56 14 4 0 
Percentage 14.3 5.3 1.3 0.4 0.0 
 
 
Table 6; Soil infiltration variables, ranked in descending order according to the number of meaningful correlations 
with image-derived spectral indices.  Column tallies on the left are inclusive of column tallies on the right. 
 
Soil Infiltration Variables (N=12) r > 0.5 r > 0.6 r > 0.7 r > 0.8 r > 0.9 
Infiltration start time - deep char 14 6 3 0 0 
Infiltration rate - deep char 11 8 5 3 0 
Infiltration rate - uncharred 8 6 3 0 0 
Water Drop Point Test - deep char 8 5 1 1 0 
Water Drop Point Test - uncharred 7 4 0 0 0 
Infiltration start time - uncharred 1 0 0 0 0 
Infiltration start time - moderate char 0 0 0 0 0 
Infiltration rate - moderate char 0 0 0 0 0 
Water Drop Point Test - moderate char 0 0 0 0 0 
Infiltration start time - light char 0 0 0 0 0 
Infiltration rate - light char 0 0 0 0 0 
Water Drop Point Test - light char 0 0 0 0 0 
Total (528 possible) 49 29 12 4 0 
Percentage 9.3 5.5 2.3 0.8 0.0 
 
 
 

DISCUSSION 
 
These results strongly suggest that BARC maps should be considered more indicative of vegetation severity than 
soil severity, as they often have been (Parsons and Orlemann 2002).  It is not surprising that the spectral indices 
derived from overhead imagery should correlate better to vegetation than soil variables because the vegetation 
occludes the ground.  Similarly, a higher proportion of surface cover variables should correlate meaningfully than 
soil infiltration variables, because the reflectance signal is more influenced by areal cover fractions than by an 
essentially point measure of a soil process such as water penetrability. 
 
Spectral mixture analysis is therefore a sensible image processing strategy to estimate green and nonphotosynthetic 
vegetation, litter and soil fractions directly from the imagery, and we will pursue this with post-fire hyperspectral 
imagery acquired over all 35 field sites.  The broad array of field variables will thus serve as valuable ground truth 
data for validating fractional cover estimates and to quantify to what degree vegetation variables have more 
influence on moderate, or especially, low burn severities compared to high burn severity. 
 
 
 



 
Figure 3; Field variables, categorized as in Tables 3-6, with meaningful correlations to spectral indices, categorized 
by sensor type (left) and index type (right) (Table 1).  Column height represents the cumulative sum of meaningful 
correlations (r > 0.5). 



Some field variables of post-fire effects are much more temporally dynamic than others.  Ash cover proved a poor 
correlate probably because it is redistributed by wind and water quickly following fire.  Green vegetation regrowth 
is another dynamic phenomenon, as is needlecast (new litter) on moderate severity burns.  At Black Mountain Two 
and Cooney Ridge, bear grass and other green vegetation had not yet resprouted, nor had most of the scorched 
needles fallen, at the time of satellite image acquisition.  Moreover, most field sites were placed soon after the fire, 
which very likely explains the stronger correlations at these wildfires (Figs. 3,4).  In future analyses, dates will be 
extracted from fire progression data to measure time elapsed from burning until the data were acquired by the 
remote sensor or collected in the field, to better evaluate the importance of the timeliness of image and field data 
acquisition. 
 
Cooney Ridge was also advantageous for comparing indices derived from Landsat-TM and SPOT-Xi, because the 
respective scenes were acquired only a day apart (Table 2, Fig. 5).  The NBR appears to produce better correlations 
if the image is acquired soon after burning, before conditions change.  As time since fire increases, the dNBR 
appears to become more useful.  In a prior study mapping burn areas in rangelands, Hudak et al. (2002) found that 
after a growing season, some burn areas could not be reliably delineated without the addition of a pre-fire image. 
 

Figure 4; Field variables, categorized as in Tables 3-6, with meaningful correlations to spectral indices, categorized 
by burn area imaged in a single acquisition (Table 1).  Column height represents the cumulative sum of meaningful 
correlations (r > 0.5). 
 



 
Rescaling the raw indices to produce the 0-255 BARC-A values changed the correlations but not to an important 
degree.  The higher proportion of meaningful BARC-A correlations (Fig. 3) is a consequence of a higher number of 
raw indices being generated from images judged suboptimal, or otherwise not used for BARC products.  There is no 
reason to expect the rescaling to consistently improve correlations to field attributes.  A great disadvantage of the 
rescaling is that is subtracts value from the BARC products, making BARC-A values incomparable between fire 
events.  We recommend that RSAC archive NBR and dNBR (if available) products, for the added value of 
monitoring post-fire recovery. 
 

 
Figure 5; Scatterplots and Pearson correlations of canopy cover vs. SPOT-XI NBR, Landsat-TM NDVI, Landsat-
TM NBR and Landsat-TM dNBR, based on six Cooney Ridge sites.  Numbers in scatterplots denote BARC classes 
(4 = high, 3 = moderate, 2 = low, 1 = unburned). 
 



 
CONCLUSION 

 
Burn severity characteristics in the field are extremely heterogeneous, and all vary continuously across scales.  
During the 2003 fire season, RSAC analysts produced a preliminary color classification of the BARC-A product 
using Jenks Natural Breaks logic.  This was not meant to represent accurate breakpoints between severity classes, 
but to provide field users with an easier starting point for classification than a grayscale image.  However, these 
breakpoints often bared little resemblance to burn severity characteristics on the ground.  Therefore, to produce the 
preliminary BARC-A color classification during the 2004 fire season, RSAC instead will apply breakpoints 
according to Key and Benson (2003a), which better relates NBR or dNBR to burn severity characteristics on the 
ground.  We encourage BAER teams to rely more on the continuous BARC-A product than the classified BARC 
product, because it is the users on the ground who are best suited to assign appropriate breakpoints to the BARC-A 
product as they consider useful. 
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